人类的生态成功依赖于我们在合作社会群体中灵活地组织的特征能力。成功的团体采用实质性专业和劳动分工。与大多数其他动物不同,人类在生活中通过反复试验学习什么角色。但是,当某些关键角色比其他角色更具吸引力,并且个人是自私的,那么就会存在社会困难:每个人都希望其他人扮演关键但无人机的角色,因此他们可能会自由自在地接受一个付费的人更好的。但是,如果所有人都采取行动,并且关键作用没有填补,就会发生灾难。在这种情况下,学习最佳角色分布可能是不可能的。因此,一个基本的问题是:劳动分裂如何在自私自利的学习个人群体中出现?在这里,我们表明,通过引入一种社会规范模型,我们将其视为分散的社会制裁模式,自私自利的个人群体可以学习涉及所有关键角色的劳动力划分。这种社会规范是通过重新分配人口中的奖励来努力使反社会角色不利的,同时激励亲社会角色,而这些角色不像本质上一样付出。
translated by 谷歌翻译
参数适应性,即根据面临的问题自动调整算法的超参数的能力,是应用于数值优化的进化计算的主要趋势之一。多年来,已经提出了一些手工制作的适应政策来解决这个问题,但到目前为止,在应用机器学习以学习此类政策时,只有很少的尝试。在这里,我们介绍了一个通用框架,用于基于最新的增强学习算法在连续域元启发术中进行参数适应。我们证明了该框架在两种算法上的适用性,即协方差矩阵适应性进化策略(CMA-ES)和差异演化(DE),我们分别学习,我们分别学习了对阶梯大小(CMA-ES),CMA-ES的适应性策略,以及比例因子和交叉率(DE)。我们在不同维度的一组46个基准函数上训练这些策略,在两个设置中具有各种策略的投入:每个功能的一个策略,以及所有功能的全局策略。将分别与累积的阶梯尺寸适应(CSA)策略和两个众所周知的自适应DE变体(IDE和JDE)进行了比较,我们的政策能够在大多数情况下产生竞争成果,尤其是在DE的情况下。
translated by 谷歌翻译
在网络中找到最有影响力的节点是一个计算困难的问题,其中有多种基于网络的问题的几个可能的应用程序。尽管已经提出了几种解决影响最大化问题(IM)问题的方法,但当网络大小增加时,它们的运行时间通常会缩放较差。在这里,我们提出了一种基于网络缩减的原始方法,该方法允许多目标进化算法(MOEA)在减少的比例网络上解决IM问题,同时保留原始网络的相关属性。然后使用基于中心度指标(例如Pagerank)的机制将缩小的解决方案升级到原始网络。我们在八个大型网络(包括$ \ sim $ 50k节点)上的结果证明了该方法的有效性,与原始网络所需的时间相比,运行时增益超过10倍,最高为82美元\%与CELF相比,$减少了时间。
translated by 谷歌翻译
Recent years have seen a proliferation of research on adversarial machine learning. Numerous papers demonstrate powerful algorithmic attacks against a wide variety of machine learning (ML) models, and numerous other papers propose defenses that can withstand most attacks. However, abundant real-world evidence suggests that actual attackers use simple tactics to subvert ML-driven systems, and as a result security practitioners have not prioritized adversarial ML defenses. Motivated by the apparent gap between researchers and practitioners, this position paper aims to bridge the two domains. We first present three real-world case studies from which we can glean practical insights unknown or neglected in research. Next we analyze all adversarial ML papers recently published in top security conferences, highlighting positive trends and blind spots. Finally, we state positions on precise and cost-driven threat modeling, collaboration between industry and academia, and reproducible research. We believe that our positions, if adopted, will increase the real-world impact of future endeavours in adversarial ML, bringing both researchers and practitioners closer to their shared goal of improving the security of ML systems.
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译
Deep learning-based object detection is a powerful approach for detecting faulty insulators in power lines. This involves training an object detection model from scratch, or fine tuning a model that is pre-trained on benchmark computer vision datasets. This approach works well with a large number of insulator images, but can result in unreliable models in the low data regime. The current literature mainly focuses on detecting the presence or absence of insulator caps, which is a relatively easy detection task, and does not consider detection of finer faults such as flashed and broken disks. In this article, we formulate three object detection tasks for insulator and asset inspection from aerial images, focusing on incipient faults in disks. We curate a large reference dataset of insulator images that can be used to learn robust features for detecting healthy and faulty insulators. We study the advantage of using this dataset in the low target data regime by pre-training on the reference dataset followed by fine-tuning on the target dataset. The results suggest that object detection models can be used to detect faults in insulators at a much incipient stage, and that transfer learning adds value depending on the type of object detection model. We identify key factors that dictate performance in the low data-regime and outline potential approaches to improve the state-of-the-art.
translated by 谷歌翻译
Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning.
translated by 谷歌翻译
A systematic review on machine-learning strategies for improving generalizability (cross-subjects and cross-sessions) electroencephalography (EEG) based in emotion classification was realized. In this context, the non-stationarity of EEG signals is a critical issue and can lead to the Dataset Shift problem. Several architectures and methods have been proposed to address this issue, mainly based on transfer learning methods. 418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases through a search query focusing on modern machine learning techniques for generalization in EEG-based emotion assessment. Among these papers, 75 were found eligible based on their relevance to the problem. Studies lacking a specific cross-subject and cross-session validation strategy and making use of other biosignals as support were excluded. On the basis of the selected papers' analysis, a taxonomy of the studies employing Machine Learning (ML) methods was proposed, together with a brief discussion on the different ML approaches involved. The studies with the best results in terms of average classification accuracy were identified, supporting that transfer learning methods seem to perform better than other approaches. A discussion is proposed on the impact of (i) the emotion theoretical models and (ii) psychological screening of the experimental sample on the classifier performances.
translated by 谷歌翻译
We extend best-subset selection to linear Multi-Task Learning (MTL), where a set of linear models are jointly trained on a collection of datasets (``tasks''). Allowing the regression coefficients of tasks to have different sparsity patterns (i.e., different supports), we propose a modeling framework for MTL that encourages models to share information across tasks, for a given covariate, through separately 1) shrinking the coefficient supports together, and/or 2) shrinking the coefficient values together. This allows models to borrow strength during variable selection even when the coefficient values differ markedly between tasks. We express our modeling framework as a Mixed-Integer Program, and propose efficient and scalable algorithms based on block coordinate descent and combinatorial local search. We show our estimator achieves statistically optimal prediction rates. Importantly, our theory characterizes how our estimator leverages the shared support information across tasks to achieve better variable selection performance. We evaluate the performance of our method in simulations and two biology applications. Our proposed approaches outperform other sparse MTL methods in variable selection and prediction accuracy. Interestingly, penalties that shrink the supports together often outperform penalties that shrink the coefficient values together. We will release an R package implementing our methods.
translated by 谷歌翻译
This thesis develops the translation between category theory and computational linguistics as a foundation for natural language processing. The three chapters deal with syntax, semantics and pragmatics. First, string diagrams provide a unified model of syntactic structures in formal grammars. Second, functors compute semantics by turning diagrams into logical, tensor, neural or quantum computation. Third, the resulting functorial models can be composed to form games where equilibria are the solutions of language processing tasks. This framework is implemented as part of DisCoPy, the Python library for computing with string diagrams. We describe the correspondence between categorical, linguistic and computational structures, and demonstrate their applications in compositional natural language processing.
translated by 谷歌翻译